3.20.70 \(\int \frac {2+3 x}{(1-2 x)^{3/2} (3+5 x)} \, dx\)

Optimal. Leaf size=41 \[ \frac {7}{11 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{11 \sqrt {55}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {78, 63, 206} \begin {gather*} \frac {7}{11 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{11 \sqrt {55}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)/((1 - 2*x)^(3/2)*(3 + 5*x)),x]

[Out]

7/(11*Sqrt[1 - 2*x]) - (2*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(11*Sqrt[55])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {2+3 x}{(1-2 x)^{3/2} (3+5 x)} \, dx &=\frac {7}{11 \sqrt {1-2 x}}+\frac {1}{11} \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx\\ &=\frac {7}{11 \sqrt {1-2 x}}-\frac {1}{11} \operatorname {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {7}{11 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{11 \sqrt {55}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 41, normalized size = 1.00 \begin {gather*} \frac {7}{11 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{11 \sqrt {55}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)/((1 - 2*x)^(3/2)*(3 + 5*x)),x]

[Out]

7/(11*Sqrt[1 - 2*x]) - (2*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(11*Sqrt[55])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 41, normalized size = 1.00 \begin {gather*} \frac {7}{11 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{11 \sqrt {55}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(2 + 3*x)/((1 - 2*x)^(3/2)*(3 + 5*x)),x]

[Out]

7/(11*Sqrt[1 - 2*x]) - (2*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(11*Sqrt[55])

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 53, normalized size = 1.29 \begin {gather*} \frac {\sqrt {55} {\left (2 \, x - 1\right )} \log \left (\frac {5 \, x + \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) - 385 \, \sqrt {-2 \, x + 1}}{605 \, {\left (2 \, x - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(1-2*x)^(3/2)/(3+5*x),x, algorithm="fricas")

[Out]

1/605*(sqrt(55)*(2*x - 1)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) - 385*sqrt(-2*x + 1))/(2*x - 1)

________________________________________________________________________________________

giac [A]  time = 1.26, size = 49, normalized size = 1.20 \begin {gather*} \frac {1}{605} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {7}{11 \, \sqrt {-2 \, x + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(1-2*x)^(3/2)/(3+5*x),x, algorithm="giac")

[Out]

1/605*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 7/11/sqrt(-2*x +
1)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 29, normalized size = 0.71 \begin {gather*} -\frac {2 \sqrt {55}\, \arctanh \left (\frac {\sqrt {55}\, \sqrt {-2 x +1}}{11}\right )}{605}+\frac {7}{11 \sqrt {-2 x +1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)/(-2*x+1)^(3/2)/(5*x+3),x)

[Out]

-2/605*arctanh(1/11*55^(1/2)*(-2*x+1)^(1/2))*55^(1/2)+7/11/(-2*x+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.17, size = 46, normalized size = 1.12 \begin {gather*} \frac {1}{605} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {7}{11 \, \sqrt {-2 \, x + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(1-2*x)^(3/2)/(3+5*x),x, algorithm="maxima")

[Out]

1/605*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 7/11/sqrt(-2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 28, normalized size = 0.68 \begin {gather*} \frac {7}{11\,\sqrt {1-2\,x}}-\frac {2\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{605} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x + 2)/((1 - 2*x)^(3/2)*(5*x + 3)),x)

[Out]

7/(11*(1 - 2*x)^(1/2)) - (2*55^(1/2)*atanh((55^(1/2)*(1 - 2*x)^(1/2))/11))/605

________________________________________________________________________________________

sympy [A]  time = 25.93, size = 78, normalized size = 1.90 \begin {gather*} \frac {2 \left (\begin {cases} - \frac {\sqrt {55} \operatorname {acoth}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 < - \frac {11}{5} \\- \frac {\sqrt {55} \operatorname {atanh}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: 2 x - 1 > - \frac {11}{5} \end {cases}\right )}{11} + \frac {7}{11 \sqrt {1 - 2 x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(1-2*x)**(3/2)/(3+5*x),x)

[Out]

2*Piecewise((-sqrt(55)*acoth(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 < -11/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1
 - 2*x)/11)/55, 2*x - 1 > -11/5))/11 + 7/(11*sqrt(1 - 2*x))

________________________________________________________________________________________